
Script : CopperCube behavior Script CharacterOnMap

By : Ahmed ABDEL SALAM

Contact : a.m.abdelsalam@techno-valley.com

Download link : http://www.techno-valley.com/ambiera/behavior_CharacterOnMap.zip

Example file : http://www.techno-valley.com/ambiera/ccmap_tutorial.zip

Let’s figure out together how this script works.

Creating a new CopperCube Scene
Create a new CopperCube scene.

Figure 1 - New CopperCube Scene

The default view will be the (Perspective View)

mailto:a.m.abdelsalam@techno-valley.com
http://www.techno-valley.com/ambiera/behavior_CharacterOnMap.zip
http://www.techno-valley.com/ambiera/ccmap_tutorial.zip

Figure 2 - CopperCube Default View

The default scene named “New 3D Scene1” contains the following objects:

- Cube : CubeMesh1
- Skybox : startup skybox

CopperCube Scene Overview
Let’s have a quick clarification about the axis already defined in CopperCube.

Figure 3 - CopperCube defined XYZ Axis

The Red Arrow represents the X-Axis

The Green Arrow represents the Y-Axis

The Blue-Arrow represents the Z-Axis

On the left pane of the application there is a window called
“Properties”. It contains all the characteristics of each selected
object. In this case for example it shows the properties of the
CubeMesh1.

Let’s select from the topic menu the “Move Icon”. This icon instructs the engine to move your selected
object.

Figure 4 - Object Properties Window

Figure 5 - CopperCube Shortcuts Menu

By default the CubeMesh1 is located at (0, 0, 0) position.

Whenever you move the CubeMesh1, the position for example will change relatively.

Before working on the scene, let’s have quick information about CopperCube Scenes.

Figure 6 - Change the Current View to Top View

This will allow you to see the scene from above. As you can see in the screenshot below, there are a lot
of squares. These squares are called the Grid. Using the grid will let you to be aware about the distances
and the size of the scene. (We’ll see this later while explaining the script)

If you can’t find these white lines (Grid) you can get it from View Menu  “Toggle 3D Grid” or by
Pressing Ctrl + G.

Figure 7 - CopperCube Scene Grid

Each white square is called a Tile. The width is by default 20 units.

Figure 8 - Grid Definitions

Preparing the CopperCube Scene
Now, let’s add a new surface (Plane) to the current scene located at the center of the scene (0, 0, 0) and
represents 10 tiles of the scene and as per the screen above we’ll use the standard (Width x Height)
equals to (20 x 20)

- Add a new plane

- Click on the plane icon under the scene editing tab (Figure 9)

- If we’re going to add a new surface represented by 10 Tiles, size of 100 units of width and length
of 100 units and the shape and the texture of the plane are repeated only once, so we need to
enter the input as follow:

o Tile count : 4 (4 Tiles to be used at least for width and height)
o Width : 40 (Using 40 Units for the whole width)
o Length : 40 (Using 40 Units for the whole length)
o Repeat Texture Count : 1 (Means the plane texture will be repeated only once)

A Tile

10 Units

10 Units

Figure 9 - Creating a plane

Figure 10 - Creating a New Plane

Please note that the more logical input the more correct output that it will appear. For example
you can’t say 1 Tile count and width is 40 otherwise the real output will use of course 4 tiles.
The final shape will look like the next figure (Figure 11)

Figure 11 - Generated Plane

From the generated plane above we can conclude the following:

Total Number of tiles used for the whole width is 4 Tiles (40 divided by 10).

40 units

Total Number of tiles used for the whole length is 4 Tiles (40 divided by 10).

The total number of tiles used = Total Number of tiles used for the whole length x Total Number of tiles
used for the whole width.

The next step is to change the plane texture for planeMesh1 to be able to differentiate between it and
the CubeMesh1

Make sure that you’ve selected the planeMesh1.

At the bottom of CopperCube Interface there is a little window called texture. So, we can use one of the
existing textures by double clicking it or browse for a texture you already have it by clicking the add
button.

Figure 12 - Select a texture

In the scene explorer, you will have a root node named “New 3D Scene1” and 3 sub objects.

A Cube named “cubeMesh1”, a Plane named “planeMesh1” and a Skybox named “startup skybox” which
is actually the scene background.

Figure 13 - Scene objects

Finally, the scene from the top view will look like the figure below (Figure 14)

Figure 14 - Scene from Top View

Now, we need to create a larger plane. So, delete the plane planeMesh1 you’ve just created. Then
create a new one with the following characteristics.

Tiles : 100

Width : 1000

Length : 1000

Repeat Texture Count : 1

This will create the planeMesh1 again on the whole grid.

Script overview
This script allows you to follow a selected character in your game on a part of the screen. This part might
contain the map for the scene you’re watching.

Before applying the script, let’s see the whole script and its explanation.

This is a behavior script.

The first part contains simple comments. (Comments are simply descriptive text)

// Script : Follow Main Character On Scene Map
// Created by : Ahmed Abdel Salam (Techno-Valley)
// e-mail : a.m.abdelsalam@techno-valley.com || support@letterskingdom.com
// Inspired by Radar Script (Jaime A. Zegpi B.)

This code below contains the integration part with the CopperCube Engine. (Figure 15)

/* <behavior jsname="behavior_CharacterOnMap" description="Follow Main
Character On Scene Map">
 <property name="scene_width" type="int" default="1000"
description="Maximum Scene Width" />
 <property name="scene_height" type="int" default="1000"
description="Maximum Scene Height" />
 <property name="radar_width" type="int" default="20" description="In
Percent in relation to the whole scene width on screen" />
 <property name="radar_height" type="int" default="20" description="In
Percent in relation to the whole scene width on screen" />
 <property name="target_character" type="scenenode" description="Select
the character to follow on screen" />
 </behavior>
*/

This behavior has to be added to the scene root node.

Then make sure you entered the following.

You will have to enter the following in CopperCube:

Scene Width, Scene Height, Radar Width, Radar Height and
the Target Character

Scene width = 1000 is the default scene width of the scene.
Scene Height= 1000 is the default scene height of the scene.

(Figure 16)

Figure 15 - Using the Behavior Script

The radar width and height is the radar appearance on the output screen and how much will be the
percentage of the usage of the whole screen. (In this case 20% of height and 20% of width)

Figure 16 - Full width and Height

1000

1000

Screen

R

behavior_CharacterOnMap = function()
{
};

behavior_CharacterOnMap.prototype.onAnimate = function(node, timeMs){

// Set the value of maximum scene width in v_scene_width (v_ means value)
 var v_scene_width = this.scene_width;
// Set the value of maximum scene height in v_scene_height (v_ means value)
 var v_scene_height = this.scene_height;

// Get the scene main character name property to plot and follow on the map
 var character_objectname =
ccbGetSceneNodeProperty(this.target_character,"Name");

// The radar width percentage in proportion to the whole screen width (v_
means value)
 var v_radar_width = this.radar_width;
// The radar height percentage in proportion to the whole screen height (v_
means value)
 var v_radar_height = this.radar_height;

function ShowOnMap(){

// Set the level height used
 var level_length = v_scene_height;
// Set the level width used
 var level_width = v_scene_width;

// Get the Screen Width Resolution in Pixels
 var screen_width = ccbGetScreenWidth();
// Get the Screen Height Resolution in Pixels
 var screen_height = ccbGetScreenHeight();
// Calculate the radar width in Pixels
 var radar_width = v_radar_width*screen_width/100;
// Calculate the radar height in Pixels
 var radar_height = v_radar_height*screen_height/100;

// Set the radar top position to left bottom you can change the map location
as you wish.
// Radar Top position = Screen Height Max Resolution - Radar Full Length
 var radar_top = screen_height - radar_height;

// Radar left position = 0 oriented to the left of the screen
 var radar_left = 0;

// Draw a square at the target position to act as the map.
// The line below draws a colored square
 // Use the example values below
 // 0x77ffffff = White Square
 // 0x77000000 = Black Square
 // 0x77ff0000 = Red Square
 // 0x7700ff00 = Green Square
 // 0x770000ff = Blue Square
// You can use your desktop calculator to convert from decimal to hexadecimal
values
// Draw the square using the following line – just remove the comment
// ccbDrawColoredRectangle(0x77ff0000, radar_left , radar_top , radar_width,
screen_height);

// You can also add your custom map drawn in relevance to your
scene/environment as well using the below command instead
// add the ccbDrawTextureRectangle command line
// [without Alpha Channel (No Transparency)]
// ccbDrawTextureRectangle (filename, radar_left, radar_top, radar_width,
w_height);

// or add the ccbDrawTextureRectangleWithAlpha command line
// [with Alpha Channel (With Transparency)]
 ccbDrawTextureRectangleWithAlpha ("map-new.png", radar_left, radar_top,
radar_width, screen_height);
// Where filename is the image for your scene from top view for example.
// Make sure to set the picture full width and full height from top view

// sc_pos_x : scene position on x axis
// sc_pos_z : scene position on z axis
// plot the character relative position on the map
// The character is shown as a little yellow square
// The square color can be changed from the ccbDrawColoredRectangle command
line as usual.
// Square size can be changed sc_pos_x-3 can be sc_pos_x-5 for example (the
square will be bigger)

// Get the target character object from its name already selected.
 var scene_character = ccbGetSceneNodeFromName(character_objectname);
// Get the target character object position
 var pos = ccbGetSceneNodeProperty(scene_character, "Position");
// Plot the square on the relative position
 var sc_pos_x = ((pos.x*-1)*radar_height) / (level_length);
 var sc_pos_z = ((pos.z*-1)*radar_width) / (level_width);
 var pin_top_left_w = ((sc_pos_x-3)+(radar_width/2));
 var pin_top_left_h = ((sc_pos_z-3)+(radar_top+(radar_height/2)));
 var pin_bottom_right_w = ((sc_pos_x+3)+(radar_width/2));
 var pin_bottom_right_h = ((sc_pos_z+3)+(radar_top+(radar_height/2)));
 ccbDrawColoredRectangle (0x77ffffff, pin_top_left_w, pin_top_left_h,
pin_bottom_right_w, pin_bottom_right_h);
 }
// Refresh frames
 ccbRegisterOnFrameEvent(ShowOnMap);
}

	Creating a new CopperCube Scene
	CopperCube Scene Overview
	Preparing the CopperCube Scene
	Script overview

